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Abstract

Detecting movement in a sample of GPS measurements involves com-

paring changes in position with a measurements from a stationary device.

I �rst show a sample of some data with discussion. I then model the the

distribution function of the position changes with the objective of identi-

fying moving and stationary states. I give the likelihood function derived

from the statistical models. This �rst model used gamma distributions

for times between measurements. This model uses truncated normal dis-

tributions. In previous demonstrations with the gamma distributions, it

turned out that coe�cients of variation were very low making the trun-

cated normal model a practical alternative.

τi, i = 0, . . . , n List of time stamps in a GPS track.

xi, i = 0, . . . , n List of global position measurements corresponding to the time
stamps τi.

Ti = τi − τi−1, i = 1, . . . , n Time interval between successive measurements.

Si = d (xi,xi−1) , i = 1, . . . , n Distance between successive measurements.

σ2
ε Device position measurement error variance, each dimension, m2.

Vi Speed with which device is actually moving before observation i.

v̄ Mean speed of device when moving.

σ2
v Variance of device speed when moving.

µ0, σ
2
0 Truncated normal distribution mean and variance parameters for time
interval between measurements when device is at rest.

µ1, σ
2
1 Truncated normal distribution mean and parameters for time interval
between measurements when device is moving.

fM=1

(
s2|Tiv̄, T 2

i σ
2
v , σ

2
ε

)
The probability of density of Sigiven that the naviga-

tion device is moving with mean speed v̄ and variance σ2
v .

Mi, i = 1, . . . , n Indicator of motion state of device in period before observation
i. Mi = 1 indicates device was moving. If Mi = 0, it was stationary.
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Movement modes and measurement

Rest stops during hikes show up in GPS tracks as clusters of track points.

Obviously, we were not zigzagging around during our rest stops. The GPS
device was at rest, but it continued to take measurements with measurement
errors of about ±10 m. For a �ner record of atheletic performance, it would be
useful to identify intervals when the hiker rested. The problem is confounded
by the presence of position measurement error. It is more di�cult to identify
rest intervals for foot travel than for, say, vehicular travel.

A GPS track consists of time-stamped positions (τi,xi) , i = 0, . . . , n. If
we take successive di�erences on the times and positions, Ti = τi − τi−1, Si =
d (xi,xi−1), then we have series that can detect motion and even estimate speed.
When the device is moving, Si is the sum of its actual displacement over the
time interval Ti and the di�erence of the position measurement errors. When
the device is at rest, Si contains only the di�erence in measurement errors and
no real displacement. The following is a scatter diagram of one data set of
successive di�erences from a backpack trip near Mount Brewer, CA. The device
was a Garmin eTrex.
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We see that the eTrex sample interval varied from 1 to 42 seconds, but was
typically every 15 seconds. We can see two modes in the scatter diagram. One is
centered at 18 seconds and 15 meters between measurements. The other mode
is centered around 30 seconds and 5 meters between measurements. The latter
mode appears to be associated with the device in the rest state, since the low
position di�erences can be explained by measurement error only. It is notable
that the rest mode has longer time intervals than the movement mode, but this
can be explained by the behavior of the device algorithm ([ref1]).

Model of successive di�erence data

Each observation (Ti, Si) is modeled as if independent of the others. The dif-
ferences are not really independent, because they arose from successive di�er-
ences. The assumption overstates the power of the data, but greatly simpli�es
our model. The assumption can be made correct by throwing out every other
observation.
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The device is either in a �stationary� (also called �rest�) state or a �moving�
state.

If in the rest state, S2
i ∼ σ2

ε × χ2 (ν = 2), in other words, a chi-square
distribution, two degrees of freedom, scaled by the position error measurement
variance. This by virtue of S2

i being the sum of of squares of two independent
position measurement errors.

If in the moving state, the device moves at speed Vi ∼ N(v̄, σ2
v). In other

words, if it is moving, the speed varies and is Gaussian.
In the moving state, S2

i has two components. One is aligned with the di-
rection that the device moved and the other is measurement error orthogonal
to the direction that the device moved. Thus, S2

i is the sum of the squares of
TiVi + Zxσε = Tiv̄ + ZvTiσv + Zxσε and Zyσε, where Zv, Zx, Zy are indepen-

dent standard normal random variables. (Tiv̄ + ZvTiσv + Zxσε)
2
is the square

of a N(Tiv̄, T
2
i σ

2
v + σ2

ε), which makes it a non-central chi-square distribution(
σ2
v + σ2

ε

)
× χ2

(
ν = 1, δ =

T 2
i v̄

2

σ2
v+σ2

ε

)
. The second squared term, (Zyσε)

2
, has a

central chi-square distribution σ2
ε × χ2 (ν = 1) . Therefore, the distribution of

S2
i for the device in the moving state is a convolution of a non-central chi-square

and central chi-square distributions with parameters as given in this paragraph.
We give it the nomenclature

fM=1

(
s2|Tiv̄, T 2

i σ
2
v , σ

2
ε

)
,

and have implemented it by numerical integration in f_non_central_convolved
within the notebook noncentralX2convolution.

The model treats time measurement errors as negligible. The variation
of time between measurements, as seen in he scatter diagram is the result of
pseudo-random behavior of the device algorithms. The time between measure-
ments are assumed to be from two-parameter gamma distributions, one gov-
erning outputs when the device is at rest and the other for when the device is
moving. For a device at rest, Ti has a Normal

(
µ0, σ

2
0

)
distribution, and when

the device is moving it has a Normal
(
µ1, σ

2
1

)
distribution.

Likelihood function

Each term of the likelihood function has a form for a device at rest and for a
device moving.

For the device at rest

If the device is at rest for observation i, then the likelihood function for obser-
vation i is

fM=0

(
Ti, S

2
i

)
=

1√
2πσ2

0

(
1− Φ

(
−µ0

σ0

)) exp

(
− (Ti − µ0)

2

2σ2
0

)
1

2σ2
ε

exp

(
− S2

i

2σ2
ε

)
,
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and the log likelihood function is

LM=0

(
Ti, S

2
i

)
= − log

(
1− Φ

(
−µ0

σ0

))
−1

2
log
(
2πσ2

0

)
− (Ti − µ0)

2

2σ2
0

−log
(
2σ2

ε

)
− S2

i

2σ2
ε

.

For the device moving

If the device is moving for observation i, then the likelihood function is

fM=1

(
Ti, S

2
i

)
=

1√
2πσ2

1

(
1− Φ

(
−µ1

σ1

)) exp

(
− (Ti − µ1)

2

2σ2
1

)
fM=1

(
s2|Tiv̄, T 2

i σ
2
v , σ

2
ε

)
,

and the log likelihood function is

LM=1

(
Ti, S

2
i

)
= − log

(
1− Φ

(
−µ1

σ1

))
−1

2
log
(
2πσ2

1

)
− (Ti − µ1)

2

2σ2
1

+log
(
fM=1

(
s2|Tiv̄, T 2

i σ
2
v , σ

2
ε

))
.

The combined likelihood function

Let Mi, i = 1, . . . , n be the indicator of the motion state of the device. We can
use Mi to describe the likelihood function for all of the motion data.

L
({(

Ti, S
2
i

)}n
i=1
| {Mi}ni=1 , v̄, σv, σ

2
ε

)

=

n∑
i=1

(1−Mi)

(
− log

(
1− Φ

(
−µ0

σ0

))
− 1

2
log
(
2πσ2

0

)
− (Ti − µ0)

2

2σ2
0

− log
(
2σ2

ε

)
− S2

i

2σ2
ε

)

+Mi

(
− log

(
1− Φ

(
−µ1

σ1

))
− 1

2
log
(
2πσ2

1

)
− (Ti − µ1)

2

2σ2
1

+ log
(
fM=1

(
s2|Tiv̄, T 2

i σ
2
v , σ

2
ε

)))
(1)

Maximum Likelihood Estimation

In (1), I have delineated {Mi}ni=1 , v̄, σv, σ
2
ε as principal parameters to be es-

timated. Others, µ0, σ
2
0 , µ1, σ

2
1 , are nuisance parameters which also would be

estimated. Given a particular solution for just the scalar parameters, say
ˆ̄v, σ̂v, σ̂

2
ε , µ̂0, σ̂

2
0 , µ̂1, σ̂

2
1 , and holding those �xed, it is a trivial matter to max-

imize the likelihood by choosing Mi. Since each Mi a�ects exactly one term of
the log likelihood, choose M̂i to maximize that one term thus:

M̂i =

arg max
M = 0, 1

[− log

(
1− Φ

(
−µ0

σ0

))
− 1

2
log
(
2πσ2

0

)
− (Ti − µ0)

2

2σ2
0

− log
(
2σ2

ε

)
− S2

i

2σ2
ε

,

− log

(
1− Φ

(
−µ1

σ1

))
− 1

2
log
(
2πσ2

1

)
− (Ti − µ1)

2

2σ2
1

− log
(
fM=1

(
s2|Tiv̄, T 2

i σ
2
v , σ

2
ε

))
]
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Inter-measurement time constraint

This model has a constraint on the left-tail probabilities of the distributions for
the time between measurements.

Pµ0,σ2
0

(Ti < t) < Pµ1,σ2
1

(Ti < t) . (2)

In words, the distribution of inter-measurement times for the stationary
device is to the left of the one for the moving device. (2) need only hold for the
left-tail probabilities, for those values of t for which Pµ1,σ2

1
(Ti < t) < 0.5. For

unrestricted normal distributions, (2) is equivalent to

µ0 ≥ µ1andσ
2
0 ≤ σ2

1 . (3)

(2) is not so true for truncated normal distributions, but the truncation

probabilities Φ
(
−µ0

σ0

)
,Φ
(
−µ1

σ1

)
being small, we use (3) in place of (2).
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