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Abstract 

Integration of an approximate model into the response surface 

analysis (RSA) of national security simulations can result in 

better-fitting surrogate models with fewer coefficients.  

RSA is used to characterize the responses of simulations to 

multiple variables. It is particularly useful with lean designs of 

experiments (DOE) that do not evaluate all possible 

combinations of the variables. RSA can be used to developed 

fast-running surrogate models of simulations enabling 

dynamic “dashboard-like” presentations of results with the 

capability to explore multivariable trade spaces and multiple 

figures of merit. Surrogate models can also serve as objective 

functions in multi-objective optimization problems. 

Simulations that support national security operations research 

often have highly nonlinear responses, causing undesirable 

behavior in the response surface estimates. Classical RSA with 

first order and polynomial terms was intended for local 

representations to identify gradients, ridges, saddle points and 

local extrema. The demand for global response surface 

representations led to advanced methods such as nonlinear 

models, neural network approximation functions and spatial 

correlation models. However, even with advanced methods, 

model misspecification can lead to response surfaces 

estimators with poor generalization. 

An approximate analytical model, tailored to the analysis 

problem, and derived from the first principles of the problem 

can improve both the fit and generalization of response surface 

estimates for national security simulations.  A trend model 

derived from first principles is able to account for known or 

hypothesized nonlinearities and interactions between 

variables, while a polynomial trend model may require many 

terms to represent the same features. There are several ways to 

employ an approximate model in RSA, one of the simplest 

being to use its output as a term in any of the popular RSA 

methods. 

In an example of a site defense against cruise missiles using 

the Extended Air Defense Simulation (EADSIM), the 

presentation will show how incorporating an approximate 

model improved the fit and generalization of four RSA 

methods. A site defense scenario was simulated in EADSIM 

using a DOE of 1,200 trials varying 12 parameters, including 

sensor ranges, weapon range, reaction times, probability of kill 

and firing doctrine, and measuring the number of threat 

leakers. The data analysis compared least squares, stochastic 

kriging and neural network response estimates with and 

without an approximate spreadsheet model of the site defense. 

Fit was measured as the root sum squared error over all data 

used in the response surface estimate, and generalization was 

measured using the leave-one-out cross-validation method. In 

this example, integrating the approximate model also tended to 

reduce the number of coefficients, simplifying the screening 

task. 

The presentation will briefly cite experiences with this method 

in air defense, homeland security ports of entry configuration 

analysis, and orbital analysis using data from STK®. Using 

approximate models in simulation analysis has other 

advantages over the “black-box” approach by providing a 

basis for theory and hypothesis testing, providing verification 

cross-checks during simulation development, providing 

explanations of the causal threads in the simulation response 

and providing a starting point for discovery when simulation 

results differ from analytical predictions.  
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Polynomial surrogate models will not fit 

many national security problems 

The polynomial can show trend and 

curvature, but… 

Response surfaces in simulation can have 

large ranges, changes in gradient, 

asymptotes and knees that are not well-

represented in polynomials 

Lack of fit error is often larger than the 

sampling error 

The example is a salvo model of expected 

kills with randomly coordinated interceptors 

(Waddell, 1961) 

This example has errors of ~20% with some 

very large departures 

The example surrogate model exhibits false 

extrema and trend reversals 

Polynomial models have many terms. They 

have to be screened to prevent over fitting 

While a polynomial surrogate model can 

give local properties (gradient and 

curvature), it is usually not suitable for a 

global representation  

Desirability of a global representation of the 

simulation response 
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Salvo model response

Number of Threats = 2

Least squares fit to salvo model
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Cross section of polynomial least squares fit to salvo model

 

 

Salvo model with random coordination, L = T(1 - PK/T)M

(Waddell, 1961)

2nd-order polynomial least squares fit, 10 terms

Number of interceptors (M) = 7

Number of threats (T) = 2

Interactive Solutions Exploration Example: A surrogate model provides a fast-running representation 

suitable for collaborative exploration of the design space  
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These types of applications require global surrogate 

models with acceptable errors 

 

 

 

 

 

 

 

 

 

  

Advances in response surface modeling aimed at a 

global representation 

Linear regression using non-polynomial functional 

forms, such as exp, sin, 1/x 

Generalized linear models transform the output of a 

linear regression to improve the behavior of the 

response surface (such as a bounded domain) 

(Staum, 2009) 

Non-linear functional forms have a general 

relationship between the coefficients and the 

predictors (Santos & Porta Nova, 1999), such as a(1 

– exp(-bx)) 

Neural networks are a generalized nonlinear form 

with layered parallel architectures (Swingler, 1996) 

Spatial correlation methods, such as kriging, 

estimate new points using weighted averages of 

observed points (Sacks et al, 1989) 

Stochastic kriging is an extension that accepts 

simulation data with sampling errors (Ankenman et 

al, 2008) 

 

  

Optimization Example: Surrogate 

models can be combined to 

generate hundreds of non-

dominated solutions for further 

screening and exploration  
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Pedestrian Traffic (crossings/hour)

Advanced methods allow us to keep a trend model to 

describe large movements and to use a refiner to 

reproduce observed responses

Trend model

Kriging refinement 
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Even with an advanced method, the misspecification of the 

trend model can result in poor interpolation (Staum, 2009)
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Approximate models 

Approximate models (AM) are 
simplifications of detailed models that 
trade off accuracy to reduce 
computation time (Qian et al, 2006) 

AM can be used in early project 
exploration to frame the problem 
domain, gain initial insight and identify 
knowledge gaps 

Experienced simulation developers use 
AM to cross-verify results (author’s 
personal experience) 

For our purposes, an approximate 
model is any representation simple 
enough to update in real time (“slider-
bar” fast!) 

 

 

 

 

 

Incorporating approximate models into response 
surface models 

Note that AM predictors will probably be covariates 
with some members of x 

Therefore, consider dropping polynomial or even 
first-order x terms if an AM output is in the model 
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A system dynamics model of site defense using stocks and flows 

Aggregation at force level is an approximation that ignores 

phenomena occurring in an entity-based Monte Carlo simulation  

Multiple linear regression

   βxfxp   TTy )()(

x
Design point (vector of the 

independent variables)

)(xf Vector of predictors from the AM

Generalized linear model

    βxfxp   TTgy )()(
)(xp Polynomial terms

 Sampling error

 g GLM link function

Kriging with FPM trend function (Qian, et al., 2006)

    ),;()(1 2 θxβxf my T   
),;( 2
θx m

Gaussian process with 

parameters      and  
2 θ

Neural net with FPM predictors

     
i

iiSy βxfx )(0

ii β,,0  Neural net coefficients

 S Neural net activation function

Definitions:
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Case study: a site cruise missile defense 
problem was modeled both with AM and 
entity-based Monte Carlo simulation 

Where should the materiel developer invest 

to achieve the best end-user value? 

How do system-level performance 

parameters relate to site defense 

effectiveness? 

12 independent variables 

Two MOEs 

Latin-hypercube DOE with 120 unique cases 

Scenario modeled in EADSIM 
(U.S. Army Space and Missile Defense Command, 

2010) 

1,200 total (10 per case) Monte Carlo 

simulations 

The standard errors of the mean varied by 

case, with overall root-mean-squares: 

0.21 for Average leakers 

0.09 for P(raid annihilation) 

A stock and flow model (see below) provides 

an AM predictor 

The stock & flow AM correlates with outputs from 
EADSIM 

The AM is a spreadsheet model using the stock and 
flow principles of slide 6 

The AM for leakers sometimes predicts negative 
leakers 

 

 

The AM for P(raid annihilation) applies an 
independence assumption to compute a binomial 
approximation from individual threat survival 
probability 
While the AMs are predictors of simulation data, they 

fail lack of fit tests (p < 10-4)  
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Averaged MOEs from the site air defense data set (120 design points)
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Fit and generalization assessed for four methods 
with and without AM 

These graphs compare the RMS errors for four types 
of response surfaces, first done traditionally without 
the AM, and then with the AM in the manner shown 
on page 4 

AM & Int also includes interactions of the AM with 
first-order design inputs (x·f(x)), per Qian et al (2006) 

Within each method are three variations that vary the 
number of estimated terms 

Least squares, GLM and kriging: polynomial 
terms up to order 2.  

Neural net: three, six and nine nodes 

 

 

 

 

Fit error is measured as the RMS error of the 
predicted against the simulation means for the whole 
data set (120 means). 

Generalization is measured using “leave-one-out” 
cross validation (Refaeilzadeh, Tang, & Liu, 2009) 

Models with AM generally have lower fit and cross 
validation errors than those without while using fewer 
terms 
Increasing number of estimated terms improves fit at 

the expense of generalization  
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AMs improved fit and generalization in a homeland 
security application 

These graphs show the effect of incorporating a 
spreadsheet AM into response surface models for a 
simulation of primary inspection operations in a land 
port of entry 

Simulations measuring service flow rate and traveler 
wait time 

Discrete event simulation in Extend
®
 

(Krahl, 2003) 

The standard errors varied by case, with overall root-
mean-squares: 

20 travelers/hour for flow rate 
2.1 min for wait time 

Generalization was measured using “k-fold” cross 

validation (Refaeilzadeh, Tang, & Liu, 2009) with 

k=2  
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Other applications of AM in security modeling and 
simulation 

Simple orbital models in MATLAB can be recalibrated to STK 

outputs 

P(Access) 

Access time probability distribution function (PDF) 

Mean revisit time 

Revisit time PDF 

In the top right example, high rate of intercept failures caused by 

premature masking 

In the bottom right example, the simulation was dropping 

travelers before they exited the system, discounting them from 

the flow rate measurement 

The AM can be a useful tool for explaining simulation 

outcomes. Some outcomes are understandable from first 

principles and some are more nuanced 

“Pulling the thread” on valid differences leads to discovery: how 

the actual response differs from our preconceptions 

AMs from an earlier phase of analysis can be useful for 

connecting the prior understanding to current understanding 

A proven AM can be useful in design of experiments to avoid 

degenerate or uninteresting cases 

Summary of Key Points 

Consider alternatives to polynomial surrogate models: linear 

regression with non-polynomial forms, generalized linear 

models, non-linear models 

Understand problem from a first-principles theory before fitting 

surrogate models 

An AM can be made a predictor term in classic and advanced 

response surface modeling 

A very good AM can be the sole trend predictor, reducing the 

error of fit, generalization error and number of terms in the 

surrogate model 

Use of AMs in security simulations can have benefits in DOE, 

verification, debugging, understanding causal threads and in 

communicating outcomes 
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